
EE 508

Lecture 21

Sensitivity Functions
• Comparison of Filter Structures

• Performance Prediction



Dependent on circuit structure 
(for some circuits, also not dependent 

on components)

Dependent only on components 
(not circuit structure)
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Metrics for Comparing Circuits

Schoeffler Sensitivity
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Summed Sensitivity

Not very useful because sum can be small even when individual 

sensitivities are large
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Strictly heuristic but does differentiate circuits with low sensitivities from those 

with high sensitivities

Review from last time



Metrics for Comparing Circuits
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Often will consider several distinct sensitivity functions to consider 

effects of different components
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Review from last time



Homogeniety (defn)

A function f is homogeneous of order 

m in the n variables {x1, x2, …xn} if

f(λx1, λx2, … λxn ) = λmf(x1,x2, … xn)

Note:  f may be comprised of  more than n variables

Review from last time



Theorem:   If a  function f is homogeneous of order m 

in the n variables {x1, x2, …xn} then
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( ) ( ), ,... , ,...1 2 n 1 2 nf x x x f x x xm   =

The concept of homogeneity and this theorem were 

somewhat late to appear

Are there really any useful applications of this rather odd 

observation?

Review from last time



Let T(s) be a voltage or current transfer function

 (i.e. dimensionless)

Observation:   Impedance scaling does not change 

any of the following, provided Op Amps are ideal:

T(s), T(jω), |T(jω)|, ω0, Q, pk, zk

So, consider impedance scaling by a parameter λ

R R→

L L→

/C C →

Thus, all of these functions are homogeneous of order  m=0 

in the impedances

( ) ( )0, ,... , ,...1 2 n 1 2 nf x x x f x x x   =

For these impedance invariant functions



Let T(s) be a Transresistance or Transconductance 

Transfer Function
Observation:   Impedance scaling does not change 

any of the following, provided Op Amps are ideal:

ω0, Q, pk, zk, band edge

So, consider impedance scaling by a parameter λ

R R→

L L→

/C C →

Thus, all of these functions are homogeneous of order  m=0 

in the impedances

( ) ( )0, ,... , ,...1 2 n 1 2 nf x x x f x x x   =

For these impedance invariant functions

(these are impedance invariant functions)



Theorem 1: If all op amps in a filter are 

ideal, then ωo, Q, BW, all band edges,  

and all poles and zeros are homogeneous 

of order 0 in the impedances.

Theorem 2: If all op amps in a filter are 

ideal and if  T(s) is a dimensionless transfer 

function, T(s), T(jω), | T(jω) |,               , are 

homogeneous of order 0 in the impedances
( )T jω



Theorem 1: If all op amps in a filter are 

ideal, then ωo, Q, BW, all band edges,  

and all poles and zeros are homogeneous 

of order 0 in the impedances.

Proof of Theorem 1

These functions are all impedance invariant so if follows trivially that they are 

homogeneous of order 0 in all of the impedances



Theorem 3: If all op amps in a filter are 

ideal and if  T(s) is an impedance transfer 

function, T(s) and T(jω) are homogeneous 

of order 1 in the impedances

Theorem 4: If all op amps in a filter are 

ideal and if  T(s) is a conductance transfer 

function, T(s) and T(jω) are homogeneous 

of order -1 in the impedances



Corollary 1: If all op amps in an RC active 

filter are ideal and there are k1 resistors and k2 

capacitors and if a function f is homogeneous of 

order 0 in the impedances,  then 
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Corollary 2: If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors then
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Corollary 1: If all op amps in an RC active 

filter are ideal and there are k1 resistors and k2 

capacitors and if a function f is homogeneous of 

order 0 in the impedances,  then 
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i=1 i=1

S = S 

Corollary 2: If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors then for any pole 

or zero Q factor
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Corollary 1:  If all op amps in an RC active filter are ideal 

and there are k1 resistors and k2 capacitors and if a 

function f is homogeneous of order 0 in the impedances,  

then
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Proof of Corollary 1:

Since f is homogenous of order zero in the impedances, z1, z2, … zk1+k2, 
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Proof of Corollary 2:
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Recall:

Theorem:  If all components are frequency 

scaled, roots (poles and zeros) will move 

along a constant Q locus

Frequency Scaling:  Scaling all frequency-

dependent elements by a constant

L ηL
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Proof of Corollary 2:
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Recall:
Theorem:  If all components are frequency 

scaled, roots (poles and zeros) will move 

along a constant Q locus

Proof:
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Let p be a pole (or zero)  of T(s)
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Since true for any variable, substitute in p
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consider

Thus p is a pole (or zero) of TFS(s)



Proof of Corollary 2:

θ

Im

Re

Original 

Root

Scaled 

Root

Recall:
Theorem:  If all components are frequency 

scaled, roots (poles and zeros) will move 

along a constant Q locus

Proof:

p
η

p
=

Thus p is a pole (or zero) of TFS(s)

p pη=

Express p in polar form

jβp = re
jβ= p  p =  re 

Thus p and p have the same angle

Thus the scaled root has the same root Q



Proof of Corollary 2:

Recall:
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Corollary 2: If all op amps in an RC active 

filter are ideal and there are k1 resistors and k2 

capacitors then                        and 1

i
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Q

R
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Proof of Corollary 2:

Since impedance scaling does not change pole (or zero)  Q, the pole (or 

zero) Q  must be homogeneous of order 0  in the impedances
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(For more generality, assume k3 inductors)

Since frequency scaling does not change pole (or zero)  Q, the pole (or 

zero) Q  must be homogeneous of order 0  in the frequency scaling 
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Proof of Corollary 2:
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From theorem about sensitivity of reciprocals, can write (1) as
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Example
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By the definition of sensitivity, it follows that 
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Following some tedious manipulations, this simplifies to



Example
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Determine the passive Q sensitivities
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Corollary 3: If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors and if pk is any 

pole and zh is any zero, then
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Corollary 3: If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors and if pk is any 

pole and zh is any zero, then
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Proof:

It was shown that scaling the frequency dependent elements by a factor η divides 

the pole (or zero) by η

Thus roots (poles and zeros) are homogeneous of order -1 in the frequency 

scaling elements



Proof:

Thus roots (poles and zeros) are homogeneous of order -1 in the frequency 

scaling elements
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(For more generality, assume k3 inductors)
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Since impedance scaling does not affects the poles, they are homogenous of 

order 0 in the impedances

(2)

Since there are no inductors in an active RC network, is follows from (1)  that 
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Corollary 4: If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors and if ZIN is any 

input impedance of the network, then
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Claim: If op amps in the filters 

considered previously are not ideal but are 

modeled by a  gain A(s)=1/(s), then all 

previous summed sensitivities developed for 

ideal op amps hold provided they are 

evaluated at the nominal value of =0



Sensitivity Analysis

If a closed-form expression for a function f 

is obtained, a straightforward but tedious 

analysis can be used to obtain the 

sensitivity of the function to any 

components

Closed-form expressions for T(s), T(jω), |T(jω)|,              , ai, bi,  can be 

readily obtained
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( )T jω



Sensitivity Analysis
If a closed-form expression for a function f is 

obtained, a straightforward but tedious analysis 

can be used to obtain the sensitivity of the 

function to any components

Closed-form expressions for pi, zi, pole or zero Q, pole or zero 

ω0, peak gain, ω3dB, BW, … (generally the most critical and 

useful circuit characteristics) are difficult or impossible to 

obtain !

( )

mm
i

i i
i=0 i=1

n n
i

i i
i=0 i=1

a s (s-z )
T s = =K

b s (s-p )

 

 

f

x

f x
S = •

x f





Consider:



Bilinear Property of Electrical Networks

Theorem:  Let x be any component or Op Amp time constant 

(1st order Op Amp model) of any linear active network 

employing a finite number of amplifiers and lumped passive 

components.   Any transfer function of the network can be 

expressed in the form

( )
( ) ( )

( ) ( )
0 1

0 1

N s +xN s
T s =

D s +xD s

where N0, N1, D0, and D1 are polynomials in s that are not dependent upon x

A function that can be expressed as given above  is said to be a bilinear 

function in the variable x and this is termed a bilateral property of electrical 

networks.

The bilinear relationship is  useful for

1. Checking for possible errors in an analysis

2. Pole sensitivity analysis
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Example of Bilinear Property :    +KRC Lowpass Filter
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Example of Bilinear Property :    +KRC Lowpass Filter
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0

2 2

2 20

02 2 2 2
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3-K 1 3 1

s +s + K s s +s +
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Can not eliminate the R2 term

Equal R Equal C
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0

2 2 2 2 2

0 0 0 0

K
T s =

R C s K sC +R sC 3-K K C s + 1+K s  + +

• Bilinear property only applies to individual components

• Bilinear property was established only for T(s)



Stay Safe and Stay Healthy !



End of Lecture 21
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